IR Optics

2nd Open Meeting of the SuperKEKB Collaboration Meeting
 Mar. 17, 2009

Haruyo Koiso

Tow Options

- High current, crab crossing, large beambeam parameter.
- A solution for $\beta^{*} x=20 \rightarrow 40 \mathrm{~cm}$
- Low emittance, low β^{*}, nano-beam.
- Just started.
- Crossing angle $30 \rightarrow 60$ mrad

High Current Option

 SuperKEKB machine parameters| | | LER | HER | |
| :---: | :---: | :---: | :---: | :---: |
| Emittanc | ε_{x} | 24 | 18 | nm |
| Emitance | ε_{y} | 0.24 | 0.09 | nm |
| Beta at IP | $\beta_{\mathrm{x}}{ }^{*}$ | 20 | 20 | cm |
| Beta at IP | $\beta_{y}{ }^{*}$ | 3 | 6 | mm |
| Bunch length | σ_{7} | 5 | 3 | mm |
| Betatron tune | v_{x} / v_{y} | .505/.5905 | .505/.5905 | |
| Synchrotron tune | $v_{\text {s }}$ | 0.025 | 0.025 | |
| Beam current | $\mathrm{I}_{+} / \mathrm{I}_{-}$ | 9.4 | 4.1 | A |
| \#bunches/harmonic\# | $\mathrm{N}_{\mathrm{b}} / \mathrm{h}$ | 5018/5120 | | |
| Crossing angle | $2 \phi_{x}$ | $30 \rightarrow 0$ (crab crossing) | | mrad |
| Beam-beam*1 | ξ_{x} | 0.182 | 0.138 | |
| | ξ_{y} | 0.295 | 0.513 | |
| Damping | T_{x} | 6000 | 4000 | turns |
| | T_{y} | 6000 | 4000 | turns |
| | T_{e} | 3000 | 2000 | turns |
| Luminosity | L | 5.3×10^{35} | | $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ |

K. Ohmi
Y. Funakoshi
*1: ignore effects of traveling focus

Large Dynamic Effects

- The beam-beam effect must be taken into account in evaluation of physical apertures.
- Horizontal beam parameters change significantly with $\xi_{x 0}=0.276$ and $v_{x}=.505$,
$-\beta_{x}{ }^{*} 20 \rightarrow 1.9 \mathrm{~cm}$
- $\varepsilon_{\mathrm{x}} 12 \rightarrow 65 \mathrm{~nm}$
Y. Funakoshi

Example: HER $B X^{*} / B Y^{*}=20 / 0.5 \mathrm{~cm}$

Physical Aperture

- Requirement : $5 \sigma_{x}$ with beam-beam effect
- Larger than injection aperture.
- $\quad \sigma_{x}$ must be decreased at QC2LE (HER) and QC2RE (HER).
- SR fan from $3 \sigma_{x}$ and $3 \sigma_{x^{\prime}}$ should also be considered.
- Increased $\beta_{x} * 20 \rightarrow 40 \mathrm{~cm}$
- Luminosity will decrease by ~20 \%.

Injection Acceptance

- Injection acceptance is evaluated:
- HER/LER 4.5E-6/7.5E-6 m w/o Damping Ring
- HER/LER 1.9E-6/2.6E-6 $\rightarrow \sim 1.0 \mathrm{E}-6 \mathrm{~m}$ with Damping Ring

M. Kikuchi

Optics with New Quads

- To reduce $\beta x^{*} 40 \rightarrow 20 \mathrm{~cm}$ again with new quads.
- 1.9 K superconducting and permanent quads.
- Additional horizontal focusing quads for HER.
- At present, only L-side is acceptable from the view point of σ_{x} and SR fan.

Present Layout

LER Optics

- βx^{*} is still 40 cm , which is limited by R -side.
- Only L-side with a new superconducting quadrupole.
- Field gradient of QCS's is optimized for LER.

HER Optics

- Only L-side with new quadrupoles.
- Additional horizontal focusing quad (permanent) is introduced.

IR: $B X * / B Y^{*}=40 / 0.5 \mathrm{~cm}$

Tsukuba: $B X * / B Y *=40 / 0.5 \mathrm{~cm}$

Low Emittance Option

	Parameters for Super B Factories			a) b-b simulation, b) geometrical	
	SuperKEKB	SuperBunch T	SuperBunch H	Super B	Super B New
$\varepsilon x(\mathrm{~nm})(\mathrm{L} / \mathrm{H})$	24/18	$1 / 10$	1/10	2.8/1.6	2.8/1.6
عy(nm)	0.24/0.09	0.0035/0.025	0.0035/0.025	0.007/0.004	0.007/0.004
$\kappa(\%)$	1/0.5	0.35/0.25	0.35/0.25	0.25/0.25	0.25/0.25
βx (mm)	200/200	$35 / 20$	35/10	35/20	44/25
βy (mm)	3/6	$0.35 / 0.22$	0.35/0.22	0.22/0.39	0.21/0.37
$\sigma x(\mu \mathrm{~m})$	69/60	5.9/14	5.9/10	9.9/5.66	11/6.32
$\sigma \mathrm{y}(\mu \mathrm{m})$	0.85/0.73	0.035/0.071	0.035/0.071	0.039/0.039	0.038/0.038
$\sigma z(\mathrm{~mm})$	5/3	6/6	6/6	5/5	5/5
$\phi \sigma z / \sigma x$	0/0	31/13	31/18	14/25	14/24
$\sigma x / \phi(\mathrm{mm})$	∞ / ∞	0.21/0.47	0.20/0.33	0.35/0.20	0.37/0.21
ne	5.25×10^{10}	3.89×10^{10}	8.11×10^{10}	5.52×10^{10}	5.99×10^{10}
np	$12 . \times 10^{10}$	6.78×10^{10}	1.39×10^{11}	5.52×10^{10}	5.99×10^{10}
$\mathrm{I}_{\text {beam }}(\mathrm{A})$	9.4/4.1	2.70/1.55	2.65/1.55	1.85/1.85	2.0/2.0
\#bunch/Cir(m)	5000/3016	2500/3016	1200/3016	1251/1800	1251/1800
ϕ (mrad) (half crossing angle)	0	30	30	24	30
$\xi \mathrm{y}$	0.30/0.51	0.067/0.068	0.139/0.139	0.147/0.150	0.125/0.126
Lum	5.3×10^{35} a)	5.0×10^{35} b)	10×10^{35} b)	11×10^{35} b)	10×10^{35} b)

Italian version of IP

- $B X^{*} / B Y^{*}=20 / .200 \mathrm{~mm}$

Italian version of IP

- Dynamic aperture

A. Morita

Summary

- For high current option, we have not yet found a realistic solution of $\beta_{x}{ }^{*}=20 \mathrm{~cm}$. At present, $\beta_{x}{ }^{*}$ remains 40 cm .
- Design of low emittance option has just started.
- Geometry of IR beam lines
- New layout with 60 mrad crossing angle

Beam size @ IR Q-magnets

$$
v_{x}=.505
$$

$$
\text { (): } 5 \sigma_{x}
$$

	QC1.E	QC2LE	QC1RE	QC2RE	0C2LP	QC2RP
$\begin{aligned} & \mathrm{b}_{\mathrm{x}}^{*}=20 \mathrm{~cm} \\ & \text { QC2RE: } \end{aligned}$	$\begin{gathered} 8.2 \\ (41) \end{gathered}$	$\begin{gathered} 26.9 \\ (134.5) \end{gathered}$	$\begin{aligned} & 11.6 \\ & (58) \end{aligned}$	$\begin{gathered} 28.8 \\ (144) \end{gathered}$	$\begin{gathered} 14.7 \\ (73.5) \end{gathered}$	$\begin{aligned} & 18.6 \\ & (93) \end{aligned}$
$\begin{aligned} & b_{x}^{*}=20 \mathrm{~cm} \\ & \text { QC2RE->IP } \end{aligned}$	$\begin{gathered} 8.4 \\ (42) \end{gathered}$	$\begin{aligned} & 19.0 \\ & (95) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (60) \end{aligned}$	$\begin{gathered} 20.7 \\ (103.5) \end{gathered}$		
$\begin{aligned} & b_{x}^{*}=40 \mathrm{~cm} \\ & \text { QC2RE->IP } \end{aligned}$	$\begin{gathered} 5.9 \\ (29.5) \end{gathered}$	$\begin{aligned} & 13.4 \\ & (67) \end{aligned}$	$\begin{gathered} 8.5 \\ (42.5) \end{gathered}$	$\begin{aligned} & 14.6 \\ & (73) \end{aligned}$	$\begin{gathered} 9.8 \\ (49) \end{gathered}$	$\begin{gathered} 12.3 \\ (61.5) \end{gathered}$

		QC1LE	QC2LE	QC1RE	QC2RE	QC2LP	QC2RP
Field gradient	T / m	15.5	3.4	12.0	8.8	6.7	3.4
Pole length	m	0.64	2.0	0.75	0.8	0.6	1.0
b bore radius	mm	25	50	48	90	80	40
Current	AT	3920	3400	11050	28400	17100	1980
coil turns Current density of	/pole	3	8	3	16	15	3
Septum conductor Field in the area for couter-circulating beam	$\mathrm{A} / \mathrm{mm}^{2}$	30	10	70	24	31	15

Table 3.3: Parameters of special quadrupole magnets

